CALCULATIONS TO ESTIMATE POPULATION AFTER 10 YEARS

Coobord	A = a	population at the beginning of the time period	<u>Our discl</u>	Survive	Direth			population at the end of the time period	to calculate births:
cohort	Age		Survival	Survive	Birth		Net		
i	group	Pop t₀		to t _{0 + 10}	Rate	Births	Migrati	Pop t _{0 + 10}	births by parent age cohort
1	0 - 9	3,900	0.989		0	0	5	425	group:
2	10 - 19	3,200	0.999	> 3857	0.011	35	0	3,857	10-19: 3200 * .011 = 35
3	20 - 29	3,300	0.998	> 3197	0.081	267	50	3,247	20-29: 3300 * .081 = 267
4	30 - 39	2,800	0.998	> 3293	0.038	106	35	3,328	30 -39: 2800 * .038 = 106
5	40 - 49	1,700	0.996	2794	0.007	12	10	2,804	40-49: 1700 * .007 = 12
6	50 - 59	1,800	0.991	1693	0	0	0	1,693	the sum of these is 420
7	60 - 69	1,100	0.975	1784 🔶	0	0	-20	1,764	
8	70 - 79	550	0.936	1073	0	0	0	1,073	-
9	80+	200	0.88	🏓 691	0	0	θ	691	
	TOTAL	18,550		18,382		420	80	18,882	

the population at the end of the time period then becomes the population at the beginning of the next time period

CALCULATIONS TO ESTIMATE POPULATION AFTER 20 YEARS

cohort	Age		Survival	Survive	Birth		Net	
i	group	Pop t _{0 + 10}		to t _{0 + 20}	Rate	Births	Migrati	Pop t _{0 + 20}
1	0 - 9	425	4 0:989		0	0	5	456
2	10 - 19	3,857	0.999	420	0.011	42	0	420
3	20 - 29	3,247	0.998	3853	0.081	263	50	3,903
4	30 - 39	3,328	0.998	3241	0.038	126	35	3,276
5	40 - 49	2,804	0.996	3321	0.007	20	10	3,331
6	50 - 59	1,693	0.991	2793	0	0	0	2,793
7	60 - 69	1,764	0.975	1678	0	0	-20	1,658
8	70 - 79	1,073	0.936	1720	0	0	0	1,720
9	80+	691	0.88		0	0	0	1,612
	TOTAL	18,882		18,638		451	80	19,169

SUMMARY TABLE: POPULATION BY 10-YEAR AGE COHORT FOR THE YEARS 2000, 2010, and 2020

(assuming that t_0 is the year 2000)

		Pop t₀	Pop t _{0 + 10}	Pop t _{0 + 20}
cohort	Age			
i	group	2000	2010	2020
1	0 - 9	3,900	425	456
2	10 - 19	3,200	3,857	420
3	20 - 29	3,300	3,247	3,903
4	30 - 39	2,800	3,328	3,276
5	40 - 49	1,700	2,804	3,331
6	50 - 59	1,800	1,693	2,793
7	60 - 69	1,100	1,764	1,658
8	70 - 79	550	1,073	1,720
9	80+	200	691	1,612
	TOTAL	18,550	18,882	19,169
Change	e over prev	+332	+287	
>> due	to natural			
	- deaths)	+252	+207	
	to net migi			
(inmigra	ation - outn	+80	+80	

UP504 Prof. Scott Campbell EXAMPLE OF POPULATION FORECASTING USING THE COHORT SURVIVAL METHOD

NOTES:

1. This is a simple example of cohort survival. It makes a few simplifying assumptions (which may be altered in more detailed cohort survival calculations): (a) 10-year cohorts rather than 1-year cohorts (to keep the number of cohorts small); (b) no differentiation between men and women (hence using birth rates rather than fertility rates directly tied to the number of women); (c) all people at the beginning of a cohort are "at risk" of having a baby, regardless of whether they survive through the entire 10-year period (this will lead to a slight overestimate of births); (d) migrants enter the cohort at the end of the period and are thus not "at risk" of having a baby until the next cohort (leading to a slight underestimate of births); (e) age-specific survival rates, birth rates and absolute migration levels are constant over time (in reality, these assumptions become more problematic the further in the future we go).

2. The example has unusually low birth rates -- far below replacement. This will lead, over time, to a dramatic reduction in population. It will take, however, many decades for the population to stabilize at a new, lower level. 3. Rounding techniques: there are several ways to deal with fractions (e.g., estimated fractional births and fractional deaths). In this example I simply rounded the numbers to the nearest whole number at each stage.

source of data: I used and modified data from: Norbert Offenheim, 1980. APPLIED MODELS IN URBAN AND REGIONAL ANALYSIS. Englewood Cliffs, NJ: Prentice-Hall. (Ch. 2 "Demographic Models"). I used Excel for the calculations, and then saved as an Adobe .pdf file.